Variable Selection and Functional Form Uncertainty in Cross-Country Growth Regressions
نویسنده
چکیده
Regression analyses of cross-country economic growth data are complicated by two main forms of model uncertainty: the uncertainty in selecting explanatory variables and the uncertainty in specifying the functional form of the regression function. Most discussions in the literature address these problems independently, yet a joint treatment is essential. We perform this joint treatment by extending the linear model to allow for multiple-regime parameter heterogeneity of the type suggested by new growth theory, while addressing the variable selection problem by means of Bayesian model averaging. Controlling for variable selection uncertainty, we confirm the evidence in favor of new growth theory presented in several earlier studies. However, controlling for functional form uncertainty, we find that the effects of many of the explanatory variables identified in the literature are not robust across countries and variable selections.
منابع مشابه
Model Uncertainty in Cross-country Growth Regressions
We investigate the issue of model uncertainty in cross-country growth regressions using Bayesian Model Averaging (BMA). We find that the posterior probability is very spread among many models suggesting the superiority of BMA over choosing any single model. Out-of-sample predictive results support this claim. In contrast with Levine and Renelt (1992), our results broadly support the more “optim...
متن کاملJointness in Bayesian Variable Selection With Applications to Growth Regression
We present a measure of jointness to explore dependence among regressors, in the context of Bayesian model selection. The jointness measure proposed here equals the posterior odds ratio between those models that include a set of variables and the models that only include proper subsets. We illustrate its application in cross-country growth regressions using two datasets from Fernández et al. (2...
متن کاملUnraveling the Fortunes of the Fortunate: An Iterative Bayesian Model Averaging (IBMA) Approach*
We investigate country heterogeneity in cross-country growth regressions. In contrast to the previous literature that focuses on low-income countries, this study also highlights growth determinants in high-income (OECD) countries. We introduce Iterative Bayesian Model Averaging (IBMA) to address not only potential parameter heterogeneity, but also the model uncertainty inherent in growth regres...
متن کاملOn the Effect of Prior Assumptions in Bayesian Model Averaging with Applications to Growth Regression
We consider the problem of variable selection in linear regression models. Bayesian model averaging has become an important tool in empirical settings with large numbers of potential regressors and relatively limited numbers of observations. We examine the effect of a variety of prior assumptions on the inference concerning model size, posterior inclusion probabilities of regressors and on pred...
متن کاملThe Rise and Fall of Cross- Country Growth Regressions
In this article I describe the evolution of the use of cross-country growth regressions in economics over the last two decades. The rise of crosscountry growth regressions was an important component of the sea change in economic research associated with the new growth economics. By their fall, I do not mean to suggest that such regressions are no longer used; the opposite is very much the case....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011